Ammonium regulation in Aspergillus nidulans.

نویسندگان

  • J A Pateman
  • J R Kinghorn
  • E Dunn
  • E Forbes
چکیده

l-Glutamate uptake, thiourea uptake, and methylammonium uptake and the intracellular ammonium concentration were measured in wild-type and mutant cells of Aspergillus nidulans held in various concentrations of ammonium and urea. The levels of l-glutamate uptake, thiourea uptake, nitrate reductase, and hypoxanthine dehydrogenase activity are determined by the extracellular ammonium concentration. The level of methylammonium uptake is determined by the intracellular ammonium concentration. The uptake and enzyme characteristics of the ammonium-derepressed mutants, meaA8, meaB6, DER3, amrA1, xprD1, and gdhA1, are described. The gdhA mutants lack normal nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase (NADP-GDH) activity and are derepressed with respect to both external and internal ammonium. The other mutant classes are derepressed only with respect to external ammonium. The mutants meaA8, DER3, amrA1, and xprD1 have low levels of one or more of the l-glutamate, thiourea, and methylammonium uptake systems. A model for ammonium regulation in A. nidulans is put forward which suggests: (i) NADP-GDH located in the cell membrane complexes with extracellular ammonium. This first regulatory complex determines the level of l-glutamate uptake, thiourea uptake, nitrate reductase, and xanthine dehydrogenase by repression or inhibition, or both. (ii) NADP-GDH also complexes with intracellular ammonium. This second and different form of regulatory complex determines the level of methylammonium uptake by repression or inhibition, or both.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unusual transcription regulation of the niaD gene under anaerobic conditions supporting fungal ammonia fermentation.

The niaD gene of the fungus Aspergillus nidulans encodes an assimilatory nitrate reductase and exogenous ammonium represses its expression. Under anoxic conditions, however, A. nidulans expressed niaD even in the presence of ammonium and used the gene product for dissimilatory nitrate reduction (ammonia fermentation). This transcription regulation mechanism under anaerobiosis is critical for th...

متن کامل

Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism.

The areA gene of Aspergillus oryzae was cloned by cross-hybridization with the Aspergillus nidulans areA gene and was found to encode an 866-amino-acid protein that is very similar to other fungal nitrogen regulatory proteins. The A. oryzae areA gene can complement A. nidulans areA loss-of-function mutations. Functional analyses indicated that the N-terminal region of the A. oryzae AreA protein...

متن کامل

Down-Regulation of sidB Gene by Use of RNA Interference in Aspergillus nidulans

Background: Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strate...

متن کامل

Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans.

Glutamine synthetase (GS), EC 6.3.1.2, is a central enzyme in the assimilation of nitrogen and the biosynthesis of glutamine. We have isolated the Aspergillus nidulans glnA gene encoding GS and have shown that glnA encodes a highly expressed but not highly regulated mRNA. Inactivation of glnA results in an absolute glutamine requirement, indicating that GS is responsible for the synthesis of th...

متن کامل

Amide utilization in Aspergillus nidulans: evidence for a third amidase enzyme.

A mutation in a gene designated gmdA has been found to lead to loss of ability of Aspergillus nidulans to use benzamide, phenylacetamide and several other amides as sole nitrogen sources for growth. The gmdA1 lesion results in low levels of an enzyme, called the general amidase, which has acitivity for a wide range of amide substrates. This enzyme is reressed by certain nitrogen-containing meta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 114 3  شماره 

صفحات  -

تاریخ انتشار 1973